100 research outputs found

    The linear dynamic lot size problem with minimum order quantities

    Get PDF
    This paper continues the analysis of a special uncapacitated single item lot sizing problem where a minimum order quantity restriction, instead of the setup cost, guarantees a certain level of production lots. A detailed analysis of the model and an investigation of the particularities of the cumulative demand structure allowed us to develop a solution algorithm based on the concept of minimal sub-problems. We present an optimal solution to a minimal sub-problem in an explicit form and prove that it serves as a construction block for the optimal solution of the initial problem. The computational tests and the comparison with the published algorithm confirm the efficiency of the solution algorithm developed here. --lot sizing problem,minimum order quantity,dynamic programming

    An O(Tˆ3) algorithm for the capacitated lot sizing problem with minimum order quantities

    Get PDF
    This paper explores a single-item capacitated lot sizing problem with minimum order quantity, which plays the role of minor set-up cost. We work out the necessary and suffcient solvability conditions and apply the general dynamic programming technique to develop an O(T³) exact algorithm that is based on the concept of minimal sub-problems. An investigation of the properties of the optimal solution structure allows us to construct explicit solutions to the obtained sub-problems and prove their optimality. In this way, we reduce the complexity of the algorithm considerably and confirm its efficiency in an extensive computational study. --production planning,capacitated lot sizing problem,single item,minimum order quantities,capacity constraints,dynamic programming

    Economic effects of mobile technologies on operations of sales agents

    Get PDF
    In the presented paper we introduce an approach to assess particular economic effects which may arise with bringing mobile technologies into the field of sales and distribution. The research problem posed here comprises quite a special case where sales operations of a company are carried by its sales representatives, which may count as a resource allocation problem. We apply stochastic programming methodology to model the agent's multistage decision making in a distribution system with uncertain customer demands, and exemplify a potential improvement in the company's overall performance when mobile facilities are utilized for making decisions. We provide finally an efficient computational algorithm that delivers optimal decision making with and without mobile technologies, and computers the expected overall performance in both cases, for any configuration of a distribution system. Some computational results are presented. --

    Solving a Production and Inventory Model with a Minimum Lot Size Constrain

    Get PDF
    The paper deals with the analysis of a special dynamic production and inventory model. In this model logical restrictions to fulfill an accepted constant minimal level of the production lot size are incorporated, instead of keeping setup cost in the objective function, as it is common in many other models. Detailed optimality conditions are derived, which make possible the application of a simple dynamic programming recursion procedure. --dynamic production-inventory model,minimum lot size,dynamic programming

    Co dimers on hexagonal carbon rings proposed as subnanometer magnetic storage bits

    Full text link
    It is demonstrated by means of density functional and ab-initio quantum chemical calculations, that transition metal - carbon systems have the potential to enhance the presently achievable area density of magnetic recording by three orders of magnitude. As a model system, Co_2-benzene with a diameter of 0.5 nm is investigated. It shows a magnetic anisotropy in the order of 0.1 eV per molecule, large enough to store permanently one bit of information at temperatures considerably larger than 4 K. A similar performance can be expected, if cobalt dimers are deposited on graphene or on graphite. It is suggested that the subnanometer bits can be written by simultaneous application of a moderate magnetic and a strong electric field.Comment: 13 pages, 4 figure

    The neuroprotective role of microglial cells against amyloid beta-mediated toxicity in organotypic hippocampal slice cultures

    Get PDF
    During Alzheimer’s disease (AD) progression, microglial cells play complex roles and have potentially detrimental as well as beneficial effects. The use of appropriate model systems is essential for characterizing and understanding the roles of microglia in AD pathology. Here, we used organotypic hippocampal slice cultures (OHSCs) to investigate the impact of microglia on amyloid beta (Aβ)-mediated toxicity. Neurons in OHSCs containing microglia were not vulnerable to cell death after 7 days of repeated treatment with Aβ1-42 oligomer-enriched preparations. However, when clodronate was used to remove microglia, treatment with Aβ1-42 resulted in significant neuronal death. Further investigations indicated signs of endoplasmic reticulum stress and caspase activation after Aβ1-42 challenge only when microglia were absent. Interestingly, microglia provided protection without displaying any classic signs of activation, such as an amoeboid morphology or the release of pro-inflammatory mediators (e.g., IL-6, TNF-α, NO). Furthermore, depleting microglia or inhibiting microglial uptake mechanisms resulted in significant more Aβ deposition compared to that observed in OHSCs containing functional microglia, suggesting that microglia efficiently cleared Aβ. Because inhibiting microglial uptake increased neuronal cell death, the ability of microglia to engulf Aβ is thought to contribute to its protective properties. Our study argues for a beneficial role of functional ramified microglia whereby they act against the accumulation of neurotoxic forms of Aβ and support neuronal resilience in an in situ model of AD pathology
    corecore